Good ideals in Gorenstein local rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Adjoint ideals and Gorenstein blowups in two-dimensional regular local rings

In this article we investigate when a complete ideal in a twodimensional regular local ring is a multiplier ideal of some ideal with an integral multiplying parameter. In particular, we show that this question is closely connected to the Gorenstein property of the blowup along the ideal.

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

Gorenstein rings through face rings of manifolds

The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the sphere g-conjecture implies all enumerative consequences of its far reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s manifold g-c...

متن کامل

. A C ] 2 3 Ju n 20 09 TEST IDEALS IN NON - Q - GORENSTEIN RINGS

Suppose that X = SpecR is an F -finite normal variety in characteristic p > 0. In this paper we show that the big test ideal τb(R) = τ̃ (R) is equal to ∑ ∆ τ(R; ∆) where the sum is over ∆ such that KX + ∆ is Q-Cartier. This affirmatively answers a question asked by various people, including Blickle, Lazarsfeld, K. Lee and K. Smith. Furthermore, we have a version of this result in the case that R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2000

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-00-02694-5